Closing Thur:
Closing Tues:
Entry Task:
Which account is best?
A: 4\%, compounded semi-annually
B: $3.97 \%$, compounded monthly
C: $3.955 \%$, compounded continuously
The fast answer is to compute the annual percentage yield (APY) for each. Let me explain what APY is by doing the fallowing:

Discrete comporenting
continuous corporicting

$$
A P Y=\left[\left(1+\frac{r}{m}\right)^{m}-1\right] \times 100 \%
$$

$$
A P Y=\left[e^{r}-1\right] \times 100 \%
$$

6.3 and 6.4 Annuities

An annuity is an interest bearing account with regular deposits or withdrawals.

Two types of Annuities:
Ordinary Annuities = payments made at. END of each compounding period.

Annuities Due = payments made at the BEGINNING of each compounding period.


Two types of questions:
Future Value Questions =
start with zero dollars in the account, make regular deposits, find the future value. (Balance is growing!)

INITIAL BALANCE $=$ 右
$2 \%$ exankt, ondimany annuity


Future
balance

$$
\begin{aligned}
P & =\frac{200}{1.02}+\frac{200}{(1.02)^{2}}+\frac{200}{(1.02)^{3}}+\frac{200}{(1.02)^{4}} \\
& =200 \cdot\left[\frac{1-(1.02)^{-4}}{0.02}\right] \epsilon \text { SHancut }
\end{aligned}
$$

TULANE $={ }^{6} 0$
WHAT IS P?

$$
P=761.54
$$

$R=$ amount of each regular payment
$r=$ decimal interest rate
$\mathrm{m}=$ num. of compoundings in a year ompute:
$i=\frac{r}{m}=$ rate at each compounding
$n=m t=$ total payments


|  | Ordinary <br> (Payments at END of <br> each period) | Due <br> (Payments at BEGINNING of <br> each period) |
| :---: | :---: | :---: |
| FV <br> (Balance <br> Growing) | $F=R \frac{(1+i)^{n}-1}{i}$ | $F=R \frac{(1+i)^{n}-1}{i}(1+i)$ |
| PV <br> (Balance <br> Shrinking) | $P=R \frac{1-(1+i)^{-n}}{i}$ | $P=R \frac{1-(1+i)^{-n}}{i}(1+i)$ |

Where do these formulas come from?
( $Y$ ou don't need to write this down).
First, you need to know the geometric sum.
By expanding you can see:

$$
\begin{aligned}
(1+x)(x-1) & =x^{2}-1 \\
\left(1+x+x^{2}\right)(x-1) & =x^{3}-1 \\
\left(1+x+x^{2}+x^{3}\right)(x-1) & =x^{4}-1
\end{aligned}
$$

and so on ...

In each case, dividing by $x-1$ gives

$$
\begin{array}{r}
1+x=\frac{x^{2}-1}{x-1} \\
1+x+x^{2}=\frac{x^{3}-1}{x-1} \\
1+x+x^{2}+x^{3}=\frac{x^{4}-1}{x-1}
\end{array}
$$

Thus, in general,

$$
1+x+x^{2}+\cdots+x^{n-1}=\frac{x^{n}-1}{x-1}
$$

Second, consider an annuity with regular payments at the end of each quarter for 2 years and $8 \%$, compounded quarterly.

$$
\begin{aligned}
& t=2 \text { years } \\
& r=0.08, m=4, \\
& i=r / m=0.02 \text { (rate used each quarter) } \\
& n=m t=8 \text { payments }
\end{aligned}
$$



$$
\begin{aligned}
F & =R(1.02)^{7}+R(1.02)^{6}+\cdots+R(1.02)+R \\
& =R \underbrace{\left[(1.02)^{7}+(1.02)^{6}+\cdots+(1.02)+1\right]}
\end{aligned}
$$

For example:

$$
1+(1.02)+\cdots+(1.02)^{7}=\frac{(1.02)^{8}-1}{1.02-1}
$$

The four scenarios:

$$
\begin{aligned}
& i=\frac{r}{m} \\
& n=m t
\end{aligned}
$$

1. Ordinary Annuity Future Value: Payments at the END of each compounding period.

You are given or want to know the future value.

2. Annuity Due Future Value: Payments at the BEGINNING of each compounding period.

You are given or want to know the future value.


$$
\text { TOTAL }=R \frac{(1+i)^{2}-1}{L}(1+i)
$$

SAME AS ABOVE
BUT WITH ONE
ExTRa COMPOunding

$$
F=R\left[\frac{(1+2)^{n}-1}{i}\right](1+i)
$$

PERIoD ANTE END
3. Ordinary Annuity Present Value: Payments at the END of each compounding period.

You are given or want to know the present (start) value.

4. Annuity Due Present Value: Payments at the BEGINNING of each compounding period.

You are given or want to know the present (start) value.


$$
\begin{aligned}
& \text { ToNAL }=12\left[\frac{1}{1+i i}+\frac{1}{(1+i)^{2}}+\frac{1}{(1+i)^{2}}+\cdots+\frac{1}{(1+i)^{8}}\right] \\
& \begin{aligned}
& \left.=\frac{12}{(1+i)}\left(1+(1+i)^{-1}+(1+i)^{-1}\right)^{2}+\left(\cdots+(1+1)^{-1}\right)^{7}\right) \\
& =\frac{12}{(1+i)} \frac{\left.(1+i)^{-1}\right)^{8}-1}{(1+i)^{-1}-1} \\
& =R \frac{(1+i)^{-8}-1}{1-(1+i)}=12 \frac{1-(1+i)^{-8}}{i} \\
D & =R\left[\frac{\left.1-(1+i)^{-n}\right]}{1}\right]
\end{aligned}
\end{aligned}
$$

FROM THE LECTURE PACK:

1. At the end of each month, you place $\$ 100$ into an account bearing 6\% interest, compounded monthly. What is the balance of the account 5 years after you start?
rdinary or Due?, FV or PV?

$$
\begin{aligned}
& r=0.06, m=12 \Rightarrow i=\frac{r}{m}=\frac{0.06}{12}=0.005 \\
& t=5 \underset{100}{\Rightarrow} \quad n=5 \cdot 12=60 \text { months } \\
& F=R \cdot \frac{1}{k} \cdot \frac{(1.005)^{60}-1}{0.005} \\
& \approx \$ 6977.00 \\
& \text { TOTAL PAYMENTS }=R \cdot n=100 \cdot 60=6000 \\
& \text { INTEREST }=\text { \# } 977
\end{aligned}
$$

2. A company establishes a sinking fund to pay a debt of $\$ 100,000$ due in 4 years. At the beginning of each six-month period, they deposit $\$ R$ in an account paying $9 \%$, compounded semi-annually. How big must the payments be to pay the debt on time?

100,000 balance in
Ordinary or Due)? (FV or PV? 4 years

$$
r=0.09, m=2 \Rightarrow L=\frac{r}{m}=0.045
$$

$$
t=4 \quad \Rightarrow n=m t=8 \text { PAYMENT } \mathcal{A}
$$

$$
\mathbb{N}_{100,000}=R=R \cdot \underbrace{(1.045)^{8}-1} \cdot(1.045)
$$

$$
100000=R \cdot 8.16371253
$$

$$
R=\frac{100000}{8.16371253} \quad \& 12249.31
$$

TOTAL PAYMENTS $=R \cdot n=12.8 \simeq 97,984.64$ INTER $\approx 2005.36$
3. Your retirement account earns 7\%, compounded quarterly. How much must the account contain when you retire if you want to withdraw $\$ 6000$ at the end of each quarter for 30 years?

Ordinary or Due?, FV or PV?

$$
\begin{aligned}
& r=0.07, m=4 \Rightarrow i=\frac{r}{m}=0.0175 \\
& t=30 \Rightarrow n=m t=120 \text { quarters } \\
& P=R^{6} \frac{1-(1.0175)^{-120}}{0.0175} \\
& P \approx^{400102.52}
\end{aligned}
$$

$$
\begin{aligned}
& \text { TOTAL PAYMENTS }=R \cdot A=6000 \cdot 120 \\
&=\$ 720,000 \\
& \text { INTEREST }=\$ / 419897.48
\end{aligned}
$$

4. You inherit $\$ 200,000$ and invest it at $3 \%$, compounded monthly. If you withdraw $\$ 1000$ at the beginning of every month, how long will the money last?

7200,000
Ordinary or DUe?, FV or PV?

$$
\begin{aligned}
& r=0.03, m=12 \Rightarrow i=\frac{r}{m}=0.0025 \\
& t=? \quad 1000 \quad \Rightarrow n=12 t
\end{aligned}
$$

$$
\begin{aligned}
& 200000=R^{1000} \frac{1-(1.0025)^{-n}}{0.0025} \cdot 1.0025 \\
& 200000=1000 \frac{\left(1-(1.0025)^{-n}\right)}{0.0025} \cdot 1.0025
\end{aligned}
$$

$$
0.49875312=1-(1.0025)^{-n}
$$

$$
(1.0025)^{-n}=0.501246883
$$

$$
-n \ln (1.0025)=\ln (0.501246883)
$$

$$
\begin{aligned}
n & \simeq 276.6077923 \text { mONTHS } \\
42 t & \simeq 276.607792 \mathrm{~J} \\
t & \simeq 23.0506 \text { year }
\end{aligned}
$$

## Several annuity examples from your financial lifetime

A Student Loan: Let's say you accumulate $\$ 40,000$ in student loans and you have graduated so it is now time to repay the loan. Most student loans are paid over 10 years and the typical rate is around $4.5 \%$, compounded monthly. What will your monthly payments be? (Assume the first payment is at the end of the first month after graduation)

Answer: First, note that $i=\frac{r}{m}=\frac{0.045}{12}=0.00375$ and there will be $n=m t=12 \cdot 10=120$ payments. This is an ordinary annuity, present value question (as loans typically are). The balance starts at $\$ 40,000$ and we will pay it down to zero. So
$P=R \frac{1-(1+i)^{-n}}{i}$ becomes $40,000=R \frac{1-(1.00375)^{-120}}{0.00375}$ which becomes $40,000=R \cdot 96.489323986$
Dividing gives

$$
R=\frac{40000}{96.489323986} \approx 414.553635=\$ 414.55 \text { monthly payment for } 10 \text { years }
$$

Other notes: In total you will make 120 payments of $\$ 414.55$, so
Total Payments $=R \cdot n=414.55 \cdot 120=\$ 49,746$, which means you will pay
Total Interest $=R \cdot n-P=\$ 9,746$.

Saving for retirement: Your company opens a $401(\mathrm{k})$ retirement account for you. Today (at the beginning of the first month), you got your first paycheck and it says there will be $\$ 500$ removed from your paycheck each month and placed in your $401(\mathrm{k})$ retirement. You plan to retire in 35 years and your retirement adviser conservative estimates that your 401(k) will earn approximately $6 \%$, compounded monthly. How much will you have saved when you retire?

Answer: First, note that $i=\frac{r}{m}=\frac{0.06}{12}=0.005$ and there will be $n=m t=12 \cdot 35=420$ payments. This is an annuity due, future value question. So

$$
F=R \frac{(1+i)^{n}-1}{i}(1+i) \quad \text { becomes } \quad F=500 \frac{(1.005)^{420}-1}{0.005}(1.005)=715916.92513=\$ 715,916.93 .
$$

Other notes: In total you will make 420 payments of $\$ 500$, so
Total Payments $=R \cdot n=500 \cdot 420=\$ 210,000$, which means you earn
Total Interest $=F-R \cdot n=\$ 505,916.93$.

Buying a Home: You want to buy a home. You have saved enough money for a down payment of $\$ 40,000$ which your mortgage broker says allows you to get a 30 -year loan that has a rate of $5 \%$, compounded monthly. You know that you can only afford to make monthly loan payments of $\$ 2,000$. How big of a home loan can you afford (in other words, what is the most expensive home price you can afford)?

Answer: First, note that $i=\frac{r}{m}=\frac{0.05}{12}=0.004166 \ldots$ and there will be $n=m t=12 \cdot 30=360$ payments. This is an ordinary annuity (all loans are, the first payment is made at the END of the first month). And it is a present value question because you will be paying down the balance. So

$$
P=R \frac{1-(1+i)^{-n}}{i} \quad \text { becomes } \quad P=2000 \frac{1-(1.004166 . .)^{-360}}{0.004166 . .} \approx 372,563.2341=\$ 372,563.23
$$

You can't afford a home that gives you a loan above $\$ 372,563.23$ (after your down payment).
Thus, the largest home value you can afford is $\$ 372,563.23+\$ 40,000=\$ 412,563.23$.
Other notes: If you get a loan of this size, then in total you will make 360 payments of $\$ 2000$, so Total Payments $=R \cdot n=2000 \cdot 360=\$ 720,000$, which means you will pay
Total Interest $=R \cdot n-P=\$ 346,436.77$.

Spending your Retirement Savings: You are 65 and you just retired. You were able to save $\$ 1,600,000$ in your retirement account which earns $5 \%$, compounded monthly. You plan to withdraw $\$ 8,000$ at the end of every month for the rest of your life. How old will you be when the money runs out?

Answer: First, note that $i=\frac{r}{m}=\frac{0.05}{12}=0.004166 \ldots$ and there will be $n=m t=12 t$ payments (we don't know $t$ ). This is a ordinary, present value question. So

$$
P=R \frac{1-(1+i)^{-n}}{i} \quad \text { becomes } \quad 1,600,000=8000 \frac{1-(1.004166 . .)^{-12 t}}{0.004166 . .}
$$

Now we solve:

$$
\begin{aligned}
200 & =\frac{1-(1.004166 . .)^{-12 t}}{0.004166 . .} & & \text { divided by } 8000 \\
0.833 \ldots & =1-(1.004166 .)^{-12 t} & & \text { multiplied by } 0.004166 \ldots \\
-0.166 \ldots & =-(1.004166 . .)^{-12 t} & & \text { subtracted } 1 \\
0.166 \ldots & =(1.004166 \ldots)^{-12 t} & & \text { multiplied by }-1 \\
\ln (0.166 \ldots) & =\ln \left((1.004166 \ldots)^{-12 t}\right) & & \text { took } \ln () \text { of both sides } \\
\ln (0.166 \ldots) & =-12 t \ln (1.004166 . .) & & \text { brought down power } \\
t & =\frac{\ln (0.166 \ldots)}{-12 \ln (1.004166 \ldots)} \approx 35.91 & & \text { divided }
\end{aligned}
$$

Thus, the money will be gone in 35.91 years, so you will be $65+35.91=100.91$ years old (so you'll have enough money to live in this way to about an age of 101).

Other notes: There are $n=12 t=12 \cdot 35.91=430.92$ or about 431 payments, so Total Payments $\approx R \cdot n=8000 \cdot 431=\$ 3,448,000$, which means you earn about Total Interest $=R \cdot n-P=\$ 1,848,000$ (over the 36 years you have the account).

